Thermal windows on Brazilian free-tailed bats facilitate thermoregulation during prolonged flight.
نویسندگان
چکیده
The Brazilian free-tailed bat (Tadarida brasiliensis) experiences challenging thermal conditions while roosting in hot caves, flying during warm daylight conditions, and foraging at cool high altitudes. Using thermal infrared cameras, we identified hot spots along the flanks of free-ranging Brazilian free-tailed bats, ventral to the extended wings. These hot spots are absent in syntopic cave myotis (Myotis velifer), a species that forages over relatively short distances, and does not engage in long-distance migration. We hypothesized that the hot spots, or "radiators," on Brazilian free-tailed bats may be adaptations for migration, particularly in this long-distance, high-flying species. We examined the vasculature of radiators on Brazilian free-tailed bats with transillumination to characterize the unique arrangements of arteries and veins that are positioned perpendicular to the body in the proximal region of the wing. We hypothesized that these radiators aid in maintaining heat balance by flushing the uninsulated thermal window with warm blood, thereby dissipating heat while bats are flying under warm conditions, but shunting blood away and conserving heat when they are flying in cooler air at high altitudes. We also examined fluid-preserved specimens representing 122 species from 15 of 18 chiropteran families and radiators appeared present only in species in the family Molossidae, including both sedentary and migratory species and subspecies. Thus, the radiator appears to be a unique trait that may facilitate energy balance and water balance during sustained dispersal, foraging, and long-distance migration.
منابع مشابه
Thermoregulation during flight: body temperature and sensible heat transfer in free-ranging Brazilian free-tailed bats (Tadarida brasiliensis).
Bat wings are important for thermoregulation, but their role in heat balance during flight is largely unknown. More than 80% of the energy consumed during flight generates heat as a by-product, and thus it is expected that bat wings should dissipate large amounts of heat to prevent hyperthermia. We measured rectal (T(r)) and surface (T(s)) temperatures of Brazilian free-tailed bats (Tadarida br...
متن کاملReconstruction and analysis of 3D trajectories of Brazilian free-tailed bats in flight
The Brazilian free-tailed bat, Tadarida brasiliensis, roosts in very large colonies, consisting of hundreds of thousands of individuals. Each night, bats emerge from their day roosts in dense columns in a highly coordinated manner. We recorded short segments of an emergence using three spatially-calibrated and temporallysynchronized thermal infrared cameras. We applied stereoscopic methods to r...
متن کاملAirplane tracking documents the fastest flight speeds recorded for bats
The performance capabilities of flying animals reflect the interplay of biomechanical and physiological constraints and evolutionary innovation. Of the two extant groups of vertebrates that are capable of powered flight, birds are thought to fly more efficiently and faster than bats. However, fast-flying bat species that are adapted for flight in open airspace are similar in wing shape and appe...
متن کاملChanges in kinematics and aerodynamics over a range of speeds in Tadarida brasiliensis, the Brazilian free-tailed bat.
To date, wake measurements using particle image velocimetry (PIV) of bats in flight have studied only three bat species, all fruit and nectar feeders. In this study, we present the first wake structure analysis for an insectivorous bat. Tadarida brasiliensis, the Brazilian free-tailed bat, is an aerial hunter that annually migrates long distances and also differs strikingly from the previously ...
متن کاملAnalyzing NEXRAD doppler radar images to assess nightly dispersal patterns and population trends in Brazilian free-tailed bats (Tadarida brasiliensis).
Operators of early weather-surveillance radars often observed echoes on their displays that did not behave like weather pattern, including expanding ring-like shapes they called angels. These echoes were caused by high-flying insects, migrating birds, and large colonies of bats emerging from roosts to feed. Modern weather-surveillance radar stations in the United States (NEXt-generation RADar o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integrative and comparative biology
دوره 50 3 شماره
صفحات -
تاریخ انتشار 2010